

A Multi-Channel Neural Recording System with Adaptive Electrode Selection for

High-Density Neural Interface

Han-Sol Lee¹, Hangue Park², and Hyung-Min Lee¹

¹ School of Electrical Engineering, Korea University, Seoul 02841, South Korea

² Department of Electrical & Computer Engineering, Texas A&M University, 3128 TAMU, College Station, TX 77843-3128

IEEE EMBC 2020(Accepted)

I. Abstract

Ш. Experiment

 The number of neural recording channels implemented on IC is limited by power, bandwidth, and area

II. Proposed System & Implementation

In-vitro experiment using Collaborative Research in Computational Neuroscience(CRCNS) database was used
Function generator with Matlab processed CRCNS data input simulates neural signal

Output 2 500ms More spikes More spikes					
Output 2	500ms	More spike	s More	spikes	
	Output 2				Ļ

	Overall chip specification				
	Process / Supply Voltage	180 nm / 1.8 V			
	Neural scanning channels				
	Number of electrodes	32			
v	Target neural signals	Neural Spike			
	Number of channels	8			
	High-pass cutoff freq.	317 Hz - 1.055 kHz			
	Power consumption / Ch.	1.85 μW			
	Die area / Ch.	0.0451 mm^2			
	Neural recording channels				
	Electrode Selection	Automatic, 32 to 12			
	Target neural signals	Neural Spike, LFP			
2	Number of channels	12			
	Voltage gain (3-bit control)	41.3 dB to 58.1 dB			
	Input-referred noise (1 Hz to 12.8 k	7.61 μV _{rms}			
	HZ)				
	Low-pass cutoff freq. (4-bit)	5 Hz - 15 Hz			
	Power consumption / Ch.	14.4 μW - 25.2 μW			
	Die area / Ch.	0.18 mm^2			

Neural Detector

Spike Combiner

Combine multiple neural electrodes into single group

Neural Scanning Amplifiers

Amplify combined neural spikes and square them

Neural Scanning Processor

Choose 3 most activated neural group information

IV. Conclusion

- Adaptive electrodes selection system is presented and tested
- In vitro experiment was performed with pre-recorded neural signal (CNCRS PFC-2) database
- Real-time counting of neural scanner output can be performed with MCU
- The chip fabrication and EDA tool were supported by the IC Design Education Center (IDEC), Korea
- This research was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT (NRF- 2017R1C1B5017989)

